Что ты знаешь о квантовой физике. Как сознание управляет материей. Квантовая физика дискретна

Тут у меня днями разговор состоялся на тему delayed choice quantum erasure , даже не столько дискуссия, сколько терпеливое объяснение мне моим замечательным френдом dr_tambowsky основ квантовой физики. Поскольку я физику в школе плохо учила, а на старости лет потянуло, то впитываю, как губка. Объяснения решила собрать в одном месте, может кому еще .

Для начала рекомендую посмотреть мультфильм для детей про интерференцию и обратить внимание на «глаз». Потому что фактически в нем вся загвоздка.

Затем можно начинать читать текст от dr_tambowsky , который я привожу ниже целиком или, кто умный и подкованный, может сразу читать это . А лучше и то, и другое.

Что такое интерференция.
Тут действительно много всяких терминов и понятий и они сильно перепутаны. Давай по порядку. Во-первых — интерференция как таковая. Примерам интерференции несть числа и разных интерферометров очень много. Конкретный эксперимент, который постоянно склоняют и часто используют в этой науке про erasure (в основном, потому что он простой и удобный) — это две щели, прорезанные рядышком, параллельно друг другу в непрозрачном экране. Для начала посветим на такую двойную прорезь светом. Свет — это же ж волна, правда? И интерференцию света мы наблюдаем постоянно. Прими на веру, что если посветить на эти две прорези, а с другой стороны поставить экран (или просто стенку), то на этом втором экране мы тоже увидим интерференционную картину — вместо двух ярких пятен света «прошедшего через прорези» на втором экране (стенке) будет забор из чередующихся ярких и тёмных полос. Отметим ещё раз, что это чисто волновое свойство: если мы будем швырять камешки, то те из них, которые попадут в прорези будут и дальше лететь прямо и будут ударять в стенку каждый за своей прорезью, то есть, мы увидим две независимых кучи камней (если они к стенке прилипнут, конечно 🙂), никакой интерференции.

Далее, помнишь, в школе учили про «корпускулярно-волновой дуализм»? Что когда всё очень маленькое и очень квантовое, то объекты — одновременно и частицы и волны? В одном из знаменитых экспериментов (эксперимент Штерна-Герлаха) в 20е годы прошлого века использовали такую же установку как описано выше, но вместо света светили… электронами. Ну, то есть, электроны ведь частицы, правда? То есть если их «кидать» на двойную прорезь, как камушки, то на стенке за прорезями мы увидим что? Ответ — не два отдельных пятна, а опять интерефенционную картину!! То есть электроны тоже могут интерферировать.

С другой стороны, выясняется, что и свет не совсем волна, но немножко и частица — фотон. То есть мы теперь такие умные, что понимаем — два эксперимента, описанных выше — суть одно и тоже. Мы швыряем на прорези (квантовые) частицы, и частицы на этих прорезях интерферируют — на стенке видны чередующиеся полосы («видны» — в смысле чем мы там фотоны или электроны регистрируем, собственно глаза для этого необязательны 🙂).

Теперь, вооружённые этой универсальной картиной, зададим следующий, более тонкий вопрос (внимание, очень важно!!):
Когда мы светим на прорези нашими фотонами/электронами/частицами — мы видим с другой стороны интерференционную картину. Прекрасно. Но что происходит с отдельным фотоном/электроном/пи-мезоном? [и давай с этого момента говорить — исключительно для удобства — только о фотонах]. Возможен ведь такой вариант: каждый фотон летит, как камушек, через свою прорезь, то есть обладает вполне определённой траекторией. Вот этот фотон летит через левую прорезь. А вон тот — через правую. Когда эти фотоны-камушки, проследовав по своим определённым траекториям, достигают стенки позади прорезей, они как то там друг с другом взаимодействуют, и в результате этого взаимодействия, уже на самой стенке, возникает интерференционная картина. Пока что ничто в наших экспериментах такой интерпретации не противоречит — ведь когда мы светим на прорезь ярким светом мы посылаем сразу много фотонов. Пёс их знает, что они там делают.

На этот важный вопрос у нас имеется ответ. Мы умеем бросать по одному фотону. Бросили. Подождали. Бросили следующий. Пристально глядим на стенку и замечаем, куда эти фотоны прилетают. Один-единственный фотон, конечно, не может создать наблюдаемую интерференционную картину в принципе — он один, и когда мы его регистрируем, мы можем его увидеть только в каком-то определённом месте, а не везде сразу. Однако, вернёмся к аналогии с камушками. Вот пролетел один камушек. Стукнулся о стенку позади одной прорези (той, через которую он пролетел, естественно). Вот другой — опять стукнулся позади прорези. Сидим. Считаем. Через какое-то время и бросив достаточно камушков, мы наберём распределение — мы увидим, что много камушков стукнулось о стенку позади одной прорези и много позади другой. И больше нигде. Делаем то же самое с фотонами — бросаем их по одному и считаем потихоньку, сколько же фотонов прилетело в каждое место на стенке. Медленно сходим с ума, потому что получившееся распределение частот ударов фотонов — вовсе не два пятна под соответствующими прорезями. Распределение это в точности повторяет интерференционную картину, которую мы видели, когда светили ярким светом. Но фотоны-то теперь прилетали по одному! Один — сегодня. Следующий — завтра. Они не могли взаимодействовать друг с другом на стенке. То есть, в полном соответствии с квантовой механикой, один, отдельный фотон одновременно является волной и ничто волновое ему не чуждо. У фотона в нашем эксперименте нет определённой траектории — каждый отдельный фотон проходит через обе щели сразу и как бы интерферирует сам с собой. Можем повторить эксперимент, оставив открытой только одну щель — тогда фотоны будут конечно кучковаться за ней. Закроем первую, откроем вторую, по-прежнему бросаем фотоны по одному. Кучкуются, ясное дело под второй, открытой, щелью. Открываем обе — получившееся распределение мест, в которых фотоны любят кучковаться, не является суммой распределений, полученных, когда только одна щель была открыта. Они теперь ещё между щелями кучкуются. А точнее, их излюбленные места кучкования теперь — это чередующиеся полосы. В этой — кучкуются, в следующей — нет, опять — да, тёмная, светлая. Ах, интерференция…

Что такое суперпозиция и спин.
Итак. Будем считать, что про интерференцию как таковую мы всё понимаем. Займёмся суперпозицией. Не знаю, как у тебя с квантовой механикой, извини. Если плохо, то придётся многое принимать на веру, в двух словах объяснить сложно.

Но в принципе, мы уже были где-то рядом — когда видели, что отдельный фотон пролетает как бы сразу через две щели. Можно сказать просто: у фотона нет траектории, волна и волна. А можно сказать, что фотон одновременно летит по двум траекториям (строго говоря, даже не по двум, конечно, а по всем сразу). Это — равносильное утверждение. В принципе, если следовать по этому пути до конца, то мы придём к «интегралу по траекториям» — Фейнмановской формулировке квантовой механики. Формулировка эта невероятно изящна и настолько же сложна, на практике ею пользоваться трудно, тем более использовать её для объяснения основ. Поэтому до конца не пойдём, а лучше помедитируем над фотоном, летящим «по двум траекториям сразу». В смысле классических понятий (а траектория — вполне себе хорошо определённое классическое понятие, либо камень летит в лоб, либо мимо), фотон находится в разных состояниях одновременно. Ещё раз, траектория — это даже не совсем то, что нам нужно, наши цели проще, я просто призываю осознать и прочувствиовать факт.

Квантовая механика говорит нам, что такая ситуация — правило, а не исключение. Любая квантовая частица может находиться (и как правило находится) в «нескольких состояниях» сразу. На самом деле, не нужно слишком серьёзно воспринимать это утверждение. Эти «несколько состояний» — это на самом деле наша классическая интуиция. Мы определяем разные «состояния» исходя из каких-то своих (внешних и классических) соображений. А квантовая частица живёт по своим законам. У неё есть состояние. Точка. Всё что утверждение о «суперпозиции» означает — это то, что это состояние может сильно отличаться от наших классических представлений. Мы вводим классическое понятие траектории и применяем его к фотону в том состоянии, в котором ему нравится быть. А фотон говорит — «извините, моё любимое состояние таково, что в отношении этих ваших траекторий я нахожусь на обеих сразу!». Это не значит, что фотон совсем не может быть в состоянии, в котором траектория (более или менее) определена. Закроем одну из прорезей — и можно, до какой то степени, говорить о том, что фотон летит через вторую по определённой траектории, которую мы хорошо понимаем. То есть, такое состояние в принципе существует. Откроем обе — фотон предпочитает быть в суперпозиции.

То же самое относится к другим параметрам. Например, собственному угловому моменту, или спину. Помнишь, про два электрона, которые могут сидеть вместе на одной s-орбитали — если у них при этом противоположные спины? Вот это как раз оно. И у фотона тоже есть спин. Спин фотона хорош тем, что в классике он на самом деле соответствует поляризации световой волны. То есть используя всякие поляризаторы и прочие кристаллы, которые у нас есть, можно манипулировать спином (поляризацией) отдельных фотонов буде они у нас появятся (а они появятся).

Так вот, спин. Спин-то у электона есть (в надежде, что орбитали и электроны тебе роднее, чем фотоны, так-то всё то же самое), но электрону абсолютно безразлично в каком «спиновом состоянии» находиться. Спин — это вектор и мы можем пытаться говорить «спин смотрит вверх». Или «спин смотрит вниз» (относительно какого-нибудь нами же выбранного направления). А электрон нам говорит: «плевал я на вас, я могу находиться на обеих траекториях в обоих спиновых состояниях сразу». Здесь опять-таки очень важно, что не много электронов находятся в разных спиновых состояниях, в ансамбле, один смотрит вверх, другой вниз, а каждый отдельный электрон находится в обоих состояниях сразу. Точно так же как не разные электроны проходят через разные прорези, а один электрон (или фотон) проходит через обе прорези сразу. Электрон может находиться в состоянии с определённым направлением спина, если его очень попросить, но сам он этого делать не станет. Полу-качественно ситуацию можно описать так: 1) есть два состояния, |+1> (спин вверх) и |-1> (спин вниз); 2) в принципе, это — кошерные состояния, в которых электрон может существовать; 3) однако если не прилагать специальных усилий, электрон «размажется» по обоим состояниям и его состояние будет что-то вроде |+1> + |-1>, состояние, в котором электрон не обладает определённым направлением спина (совсем как траектория 1+траектория 2, правда?). Это и есть «суперпозиция состояний».

Про коллапс волновой функции.
Нам осталось совсем немного — понять что такое измерение и «коллапс волновой функции». Волновая функция — это то что мы выше написали, |+1> + |-1>. Просто описание состояния. Можно для простоты говорить о самом состоянии, как таковом, и о его «коллапсе», неважно. Происходит вот что: летит себе электрон в таком вот неопределённом состоянии духа, то ли он вверх, то ли вниз, то ли и то и другое сразу. Тут подбегаем мы с каким-нибудь устрашающего вида прибором и давай измерять направление спина. В данном конкретном случае достаточно сунуть электрон в магнитное поле: те электроны, у которых спин смотрит вдоль направления поля должны отклоняться в одну сторону, те у которых против поля — в другую. Мы сидим с другой стороны и потираем ручонки — видим в какую сторону электрон отклонился и сразу знаем, вверх у него смотрит спин или вниз. Фотоны можно совать в поляризационный фильтр — если поляризация (спин) +1 — фотон проходит, если -1, то нет.

Но позвольте — ведь у электрона не было определённого направления спина до измерения? Вот в этом вся фишка. Определённого — не было, но он был как бы «смешан» из двух состояний сразу, и в каждом из этих состояний направление очень даже было. В процессе измерения мы заставляем электрон принять решение, кем ему быть и куда смотреть — вверх или вниз. В вышеописанной ситуации мы, конечно, в принципе не можем предсказать заранее какое решение примет данный конкретный электрон, когда он влетит в магнитное поле. С вероятностью 50% он может решить «вверх», с такой же вероятностью — «вниз». Но уж как только он это решит — он находится в состоянии с определённым направлением спина. В результате нашего «измерения»! Это и есть «коллапс» — до измерения волновая функция (пардон, состояние) была |+1> + |-1>. После того как мы «измерили» и увидели, что электрон отклонился в определённую сторону — его направление спина определено и его волновая функция стала просто |+1> (или |-1>, если отклонился в другую). То есть состояние «сколлапсировало» на одну из своих составляющих; «подмешивания» второй составляющей больше нет и в помине!

В значительной степени этому было посвящено пустое философствование в исходной записи, и этим мне не нравится конец мультика. Там просто нарисован глаз и у неискушённого зрителя может возникнуть во-первых иллюзия некоей антропоцентричности процесса (мол, нужен наблюдатель, чтобы провести «измерение»), во-вторых его неинвазивности (ну, мы же просто смотрим!). Мои представления на эту тему были изложены выше. Во-первых, «наблюдатель» как таковой не нужен, конечно. Достаточно привести квантовую систему в контакт с большой, классической системой и всё произойдёт само собой (электроны будут влетать в магнитное поле и решать кем им быть независимо от того сидим мы с другой стороны и наблюдаем или нет). Во-вторых, неинвазивное классическое измерение квантовой частицы невозможно в принципе. Нарисовать глаз легко, а что значит «посмотреть на фотон и узнать куда он полетел»? Чтобы посмотреть нужно чтобы в глаз попали фотоны, желательно — много. Как можно так устроить, чтобы много фотонов прилетели и рассказали нам всё о состоянии одного несчастного фотона, состоянием которого мы интересуемся? Посветить на него фонариком? И что от него после этого останется? Ясно, что мы очень сильно повлияем на его состояние, возможно до такой степени, что ему и в одну из прорезей уже лезть не захочется. Это всё не так интересно. Но до интересного мы уже, наконец, добрались.

Про парадокс Эйнштейна-Подольского-Розена и когерентные (entangled) пары фотонов
Мы теперь знаем про суперпозицию состояний, но до сих пор мы говорили только об одной частице. Исключительно для простоты. Но всё же, что если частицы у нас две? Можно приготовить пару частиц во вполне себе квантовом состоянии, так что их общее состояние описывается одной, общей волновой функцией. Это, конечно, не просто — два произвольных фотона в соседних комнатах или электрона в соседних пробирках друг про друга и знать не знают, поэтому их можно и нужно описывать совершенно независимо. Поэтому как раз можно считать энергию связи, скажем, одного электрона на одном протоне в атоме водорода, совершенно не интересуясь другими электронами на марсе или даже на соседних атомах. Но если специально постараться, то квантовое состояние охватываюшее две частицы сразу можно создать. Это будет называться «когерентное состояние», применительно к парам частиц и всяким квантовым erasures и компютерам это ещё называют entangled state.

Двигаемся дальше. Мы можем знать (в силу ограничений, накладываемых процессом приготовления этого когерентного состояния), что, скажем, полный спин нашей системы из двух частиц равен нулю. Ничего страшного, мы же знаем, что спины двух электронов на s-орбитали обязаны быть антипараллельны, то есть полный спин — ноль, и это нас совершенно не пугает, правда? Чего мы не знаем — это куда смотрит спин конкретной частицы. Мы только знаем, что куда бы он не смотрел, спин второй должен смотреть в другую сторону. То есть, если мы обозначим наши две частицы (А) и (Б), то состояние может быть, в принципе, такое: |+1(А), -1(Б)> (А смотрит вверх, Б вниз). Это — разрешённое состояние, налагаемых ограничений оно не нарушает. Другая возможность — |-1(А), +1(Б)> (наоборот, А вниз, Б вверх). Тоже возможное состояние. Ещё не напоминает состояния, которые мы чуть раньше записывали для спина одного единственного электрона? Потому что наша система из двух частиц, пока она квантовая и когерентная, точно также может (и будет) находиться в суперпозиции состояний |+1(А); -1(Б)> + |-1(А); +1(Б)>. То есть, обе возможности реализованы одновременно. Как обе траектории фотона или оба направления спина одного электрона.

Измерять такую систему гораздо увлекательнее, чем отдельный фотон. Действительно, предположим, что мы измеряем спин только одной частицы, А. Мы уже поняли, что измерение — для квантовой частицы тяжёлый стресс, её состояние в процессе измерения сильно поменяется, произойдёт коллапс… Всё так, но — в данном-то случае есть ещё вторая частица, Б, которая намертво с А связана, у них волновая функция общая! Предположим, что мы измерили направление спина А и увидели, что оно +1. Но у А нет своей собственной волновой функции (или другими словами, своего собственного, независимого состояния), чтобы она сколлапсировала к |+1>. Всё что у А есть — это состояние «переплетённое» (entangled) с Б, выписанное выше. Если измерение А даёт +1 и мы знаем, что спины А и Б антипараллельны, мы знаем что спин Б смотрит вниз (-1). Волновая функция пары коллапсирует к чему может, а может она только к |+1(А); -1(Б)>. Других возможностей выписанная волновая функция нам не предоставляет.

Пока ничего? Подумаешь, полный спин сохраняется? Теперь представим себе, что мы создали такую пару А, Б и дали этим двум частицам разлетаться в разные стороны, оставаясь когерентными. Одна (А) долетела до Меркурия. А другая (Б), скажем, до Юпитера. В этот самый момент мы случились на Меркурии и измерили направление спина А. Что произошло? В этот же самый момент мы узнали направление спина Б и изменили волновую функцию Б! Обрати внимание, что это совсем не то же что в классике. Пускай два разлетающихся камня вращаются вокруг своей оси и пускай мы точно знаем, что они вращаются в противоположные стороны. Если мы измерим направление вращения одного, когда он достигнет Меркурия, мы тоже узнаем направление вращения второго, где бы он к тому моменту не оказался, хоть на Юпитере. Но эти камни всегда вращались в определённую сторону, до всяких наших измерений. И если кто-то измерит камень летящий к Юпитеру, то он(а) получит тот же самый и вполне определённый ответ, независимо от того, измерили мы что-то на Меркурии или нет. С нашими фотонами ситуация совершенно иная. Ни один из них не имел вообще никакого определённого направления спина до измерения. Если бы кто-то без нашего участия решил измерить направление спина Б где-нибудь в районе Марса, то он получил бы что? Правильно, с вероятностью 50% он увидел бы +1, с вероятностью 50% -1. Такое у Б состояние, суперпозиция. Если же этот кто-то решит измерить спин Б немедленно после того как мы уже измерили спин А, увидели +1 и вызвали коллапс *всей* волновой функции,
то он получит в результате измерения только -1, с вероятностью 100%! Только в момент нашего измерения А, наконец, решил кем ему быть и «выбрал» направление спина — и этот выбор мгновенно повлиял на *всю* волновую функцию и на состояние Б, который в этот момент уже находится чёрт знает где.

Вот эта-то неприятность и называется «нелокальность квантовой механики». Также известна как парадокс Эйнштейна-Подольского-Розена (EPR paradox) и, в общем, то что происходит в erasure с этим связано. Может быть я чего то недопонимаю, конечно, но на мой вкус erasure инетерсен тем, что это как раз эскпериментальная демострация нелокальности.

Упрощенно, эсксперимент с erasure может выглядеть так: создаём когерентные (entangled) пары фотонов. По одной: пара, потом следующая, и т.д. В каждой паре один фотон (А) летит в одну сторону, другой (Б) в другую. Всё как мы уже обсуждали чуть выше. На пути фотона Б ставим двойную прорезь и смотрим, что там за этой прорезью на стенке вырисовывается. Вырисовывается интерференционная картина, потому что каждый фотон Б, как мы знаем, летит по обеим траекториям, через обе прорези сразу (мы ещё помним про интерференцию, с которой мы начали эту историю, правда?). То, что Б ещё когерентно связан с А и имеет общую с А волновую функцию ему довольно фиолетово. Усложняем эксперимент: одну прорезь прикрываем фильтром, который пропускает только фотоны со спином +1. Вторую прикрываем фильтром, который пропускает только фотоны со спином (поляризацией) -1. Продолжаем наслаждаться интерференционной картиной, потому что в общем состоянии пары А,Б (|+1(А); -1(Б)> + |-1(А);+1(Б)>, как мы помним), присутствуют состояния Б и с тем и с другим спином. То есть «часть» Б может пройти через один фильтр/прорезь, часть — через другой. Так же как раньше одна «часть» летела по одной траектории, другая по другой (это, конечно, фигура речи, но факт остаётся фактом).

Наконец, кульминация: где-нибудь на меркурии, или чуть поближе, на другом конце оптического стола, мы ставим поляризационный фильтр на пути фотонов А, а за фильтром детектор. Пускай, для определённости, этот новый фильтр пропускает только фотоны со спином +1. Каждый раз когда срабатывает детектор, мы знаем что пролетел фотон А со спином +1 (спин -1 не пройдёт). Но это означает, что волновая функция всей пары сколлапсировала и у «брата» нашего фотона, у фотона Б, в этот момент осталось только одно возможное состояние -1. Всё. Фотону Б «нечем» теперь пролезать через, прорезь покрытую фильтром, пропускающим только поляризацию +1. У него просто не осталось такой составляюшей. «Узнать» этот фотон Б очень просто. Мы ведь создаём пары по одной. Когда мы регистрируем фотон А, прошедший через фильтр, мы записываем время, в которое он пришёл. Пол-второго, например. Значит, его «брат» Б прилетит на стенку тоже в пол-второго. Ну или в 1:36, если ему лететь чуть дальше и, следовательно, дольше. Там мы тоже записываем времена, то есть можем сопоставить кто есть кто и кто кому родственник.

Так вот, если мы теперь посмотрим какая картинка вырисовывается на стенке, мы не обнаружим никакой интерференции. Фотон Б из каждой пары проходит либо через одну прорезь, либо через другую. На стенке — два пятна. Теперь, убираем фильтр с пути фотонов А. Интерференционная картина восстанавливается.

…и наконец про delayed choice
Совсем паскудной ситуация становится, когда фотону А лететь до своего фильтра/детектора дольше, чем фотону Б до прорезей. Мы производим измерение (и заставляем А решить, а волновую функцию сколлапсировать) после того как Б должен был бы уже долететь до стенки и создать интерференционную картину. Однако, пока мы измеряем А, даже «позже, чем следует», интерференционная картина для фотонов Б всё равно пропадает. Убираем фильтр для А — восстанавливается. Это уже — delayed erasure. Не могу сказать, что я хорошо понимаю с чем это едят.

Поправки и уточнения.
Всё было правильно, с поправкой на неизбежные упрощения, до тех пор, пока мы не построили прибор с двумя entangled фотонами. Сначала интерференция у фотона Б есть. С фильтрами, похоже, не получится. Закрывать нужно пластинками, которые меняют поляризацию с линейной на круговую. Это уже сложнее обяснить 😦 Но главное не это. Главное, что когда мы так закрываем прорези разными фильтрами, то интерференция пропадает. Не в тот момент, когда мы измеряем фотон А, а сразу. Хитрая фишка состоит в том, что поставив фильтры пластинки мы «пометили» фотоны Б. Другими словами, фотоны Б несут на себе дополнительную информацию, позволяющую узнать по какой именно траектории они пролетели. *Если* мы измерим фотон А, то мы сможем узнать по какой именно траектории пролетел Б, значит и интерференции у Б не будет. Тонкость состоит в том, что физически «измерять» А не обязательно! Тут я в прошлый раз грубо ошибся. Не нужно измерять А, чтобы интерференция пропала. Если *можно* измерить и узнать по какой из траекторий пролетел фотон Б, то уже в этом случае интерференции не будет.

На самом деле, это ещё можно пережить. Там, по ссылке ниже народ как-то несколько беспомощно руками разводит, но по-моему (может быть я опять неправ? 😉) объяснение такое: сунув в прорези фильтры мы уже сильно изменили систему. Неважно, зарегистрировали мы реально поляризацию или траекторию по которой фотон прошёл или махнули в последний момент рукой. Важно что мы всё «приготовили» для измерения, уже повлияли на состояния. Поэтому, собственно «измерять» (в смысле сознательного человекоподобного наблюдателя, принесшего градусник и записавшего результат в журнал) ничего не нужно. Всё в некотором смысле (в смысле воздействия на систему) уже «измерено». Утверждение обычно формулируется так: «*если* мы измерим поляризацию фотона А, то мы будем знать поляризацию фотона Б, а следовательно и его траекторию, ну а раз фотон Б летит по определённой траектории, то интерференции не будет; мы можем даже не проводить измерение фотона А — достаточно того, что это измерение возможно, фотон Б знает о том, что его можно измерить и отказывается интерферировать». Есть в этом некоторая мистификация. Ну да, отказывается. Просто потому что систему так приготовили. Если в системе есть дополнительная информация (есть способ) определить по какой из двух траекторий пролетел фотон, то и интерференции не будет.

Если я тебе скажу, что я всё устроил так, чтобы фотон летел только через одну прорезь, ты ведь сразу поймешь что интерференции не будет? Можешь бежать проверять («измерять») и убеждаться, что я правду говорю, а можешь и так поверить. Если я не соврал, то интерференции не будет безотносительно того бросишься ты меня проверять или нет 🙂 Соответственно, фраза «можно измерить» на деле означает «система приготовлена таким специальным образом что…». Приготовлена и приготовлена, то есть в этом месте ещё коллапса никакого нет. Есть «помеченные» фотоны и отсутствие интерференции.

Вот дальше — почему, собственно, erasure это всё называется — нам говорят: а давайте-ка подействуем на систему так, чтобы «стереть» эти метки с фотонов Б — тогда они снова начнут интерферировать. Интересный момент, к которому мы уже подходили, хотя и в ошибочной модели, состоит в том, что фотоны Б можно не трогать, и пластинки в прорезях оставить. Можно подёргать за фотон А и так же как при коллапсе, изменение его состояния вызовет (нелокально) изменение полной волновой функции системы так, что информации, достаточной для определения через какую щель прошёл фотон Б, у нас больше не будет. То есть, вставляем на пути фотона А поляризатор — интерференция фотонов Б восстанавливается. С delayed всё то же самое — делаем так, что фотону А лететь до поляризатора дольше, чем Б до прорезей. И всё равно если на пути у А есть поляризатор, то Б интерферирует (хотя как бы «до того» как А долетел до поляризатора)!

Добро пожаловать на блог! Я очень рада Вам!

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое интерференция?
  • Что такое спин и суперпозиция?
  • Что такое «измерение» или «коллапс волновой функции»?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Что такое квантовая физика и квантовая механика?

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.

  • Перевод

По словам Оуэна Маруни, работающего физиком в Оксфордском университете, с момента появления квантовой теории в 1900-х годах все говорили о странности этой теории. Как она позволяет частицам и атомам двигаться в нескольких направлениях одновременно, или одновременно вращаться по часовой и против часовой стрелки. Но словами ничего не докажешь. «Если мы рассказываем общественности, что квантовая теория очень странная, нам необходимо проверить это утверждение экспериментально,- говорит Маруни. – А иначе мы не наукой занимаемся, а рассказываем про всякие закорючки на доске».

Именно это навело Маруни сотоварищи на мысль разработать новую серию экспериментов для раскрытия сути волновой функции – загадочной сущности, лежащей в основе квантовых странностей. На бумаге, волновая функция – просто математический объект, обозначаемый буквой пси (Ψ) (одна из тех самых закорючек), и используется для описания квантового поведения частиц. В зависимости от эксперимента, волновая функция позволяет учёным вычислять вероятность наблюдения электрона в каком-то конкретном месте, или шансы того, что его спин ориентирован вверх или вниз. Но математика не говорит о том, что на самом деле такое волновая функция. Это нечто физическое? Или просто вычислительный инструмент, позволяющий работать с невежественностью наблюдателя касательно реального мира?

Использованные для ответа на вопрос тесты очень тонкие, и им всё ещё предстоит выдать однозначный ответ. Но исследователи оптимистичны в том, что развязка близка. И им, наконец, удастся ответить на вопросы, мучавшие всех десятки лет. Может ли частица реально быть во многих местах одновременно? Делится ли Вселенная постоянно на параллельные миры, в каждом из которых существует наша альтернативная версия? Существует ли вообще нечто под названием «объективная реальность»?

«Такие вопросы рано или поздно появляются у любого»,- говорит Алессандро Федриччи, физик из Квинслендского университета (Австралия). «Что на самом деле реально?»

Споры о существе реальности начались ещё тогда, когда физики выяснили, что волна и частица – лишь две стороны одной медали. Классический пример – эксперимент с двумя щелями, где отдельные электроны выстреливаются в барьер, имеющий две щели: электрон ведёт себя так, будто проходит через две щели одновременно, создавая полосатый рисунок интерференции с другой её стороны. В 1926 году австрийский физик Эрвин Шрёдингер придумал волновую функцию для описания этого поведения и вывел уравнение, позволявшее вычислять её для любой ситуации. Но ни он, ни кто либо ещё, не мог ничего рассказать о природе этой функции.

Благодать в невежестве

С практической точки зрения её природа не важна. Копенгагенская интерпретация квантовой теории, созданная в 1920-х годах Нильсом Бором и Вернером Гейзенбергом, использует волновую функцию просто как инструмент для предсказания результатов наблюдений, позволяя не думать о том, что происходит при этом в реальности. «Нельзя винить физиков в такой модели поведения, „заткнись и считай“, поскольку она привела к значительным прорывам в ядерной и атомной физике, физике твёрдого тела и физике элементарных частиц»,- говорит Джин Брикмонт, специалист по статистической физике Католического университета в Бельгии. «Поэтому люди советуют не волноваться относительно фундаментальных вопросов».

Но некоторые всё равно волнуются. К 1930-м годам Эйнштейн отверг копенгагенскую интерпретацию, не в последнюю очередь потому, что она позволяла двум частицам спутывать свои волновые функции, что приводило к ситуации, в которой измерения одной из них могли мгновенно дать состояние другой, даже если они при этом разделены огромными расстояниями. Чтобы не смиряться с этим «пугающим взаимодействием на расстоянии», Эйнштейн предпочитал верить, что волновые функции частиц были неполны. Он говорил, что возможно, у частиц есть некие скрытые переменные, определяющие результат измерения, которые не были замечены квантовой теорией.

Эксперименты с тех пор продемонстрировали работоспособность пугающего взаимодействия на расстоянии, что отвергает концепцию скрытых переменных. но это не остановило остальных физиков интерпретировать их по-своему. Эти интерпретации делятся на два лагеря. Одни соглашаются с Эйнштейном в том, что волновая функция отражает наше невежество. Это то, что философы зовут пси-эпистемическими моделями. А другие рассматривают волновую функцию как реальную вещь – пси-онтические модели.

Чтобы понять разницу, представим себе мысленный эксперимент Шрёдингера, описанный им в 1935 году в письме Эйнштейну. Кот находится в стальной коробке. Коробка содержит образец радиоактивного материала, у которого есть 50% шанс испустить продукт распада за один час, и аппарат, отравляющий кота в случае, если этот продукт будет обнаружен. Поскольку радиоактивный распад – событие квантового уровня, пишет Шрёдингер, правила квантовой теории говорят, что в конце часа волновая функция внутренностей коробки должна быть смесью из мёртвого и живого кота.

«Грубо говоря,- мягко выражается Федриччи,- в пси-эпистемической модели кот в коробке либо жив, либо мёртв, и мы просто не знаем этого из-за того, что коробка закрыта». А в большинстве пси-онтических моделей существует согласие с копенгагенской интерпретацией: пока наблюдатель не откроет коробку, кот одновременно будет и жив и мёртв.

Но тут спор заходит в тупик. Какая из интерпретаций истинна? На этот вопрос сложно ответить экспериментально, поскольку разница между моделями очень тонка. Они по сути должны предсказать то же квантовое явление, что и очень успешная копенгагенская интерпретация. Эндрю Уайт, физик из Квинслендского университета, говорит, что за его 20-летнюю карьеру в квантовых технологиях «эта задача была как огромная гладкая гора без уступов, к которой нельзя было подступиться».

Всё поменялось в 2011 году, с опубликованием теоремы о квантовых измерениях, которая вроде бы устранила подход «волновая функция как невежество». Но по ближайшему рассмотрению оказалось, что эта теорема оставляет достаточно место для их манёвра. Тем не менее, она вдохновила физиков серьёзно задуматься о способах решения спора путём тестирования реальности волновой функции. Маруни уже разработал эксперимент, который в принципе работоспособен, и он с коллегами вскоре нашёл способ заставить его работать на практике. Эксперимент был проведён в прошлом году Федриччи, Уайтом и другими.

Для понимания идеи теста представьте две колоды карт. В одной есть только красные, в другой – только тузы. «Вам дают карту и просят определить, из какой она колоды»,- говорит Мартин Рингбауэр, физик из того же университета. Если это красный туз, «случается пересечение, и вы не сможете сказать этого определённо». Но если вы знаете, сколько карт в каждой колоде, можно подсчитать, как часто будет возникать такая двусмысленная ситуация.

Физика в опасности

Такая же двусмысленность случается и в квантовых системах. Не всегда можно одним измерением узнать, например, как поляризован фотон. «В реально жизни просто отличить запад от направления чуть южнее запада, но в квантовых системах это не так просто»,- говорит Уайт. Согласно стандартной копенгагенской интерпретации, нет смысла спрашивать о поляризации, поскольку у вопроса нет ответа – пока ещё одно измерение не определит ответ в точности. Но согласно модели «волновая функция как невежество», вопрос имеет смысл – просто в эксперименте, как и в том, с колодами карт, не хватает информации. Как и с картами, возможно предсказать, сколько двусмысленных ситуаций можно объяснить таким невежеством, и сравнить с большим количеством двусмысленных ситуаций, разрешённых стандартной теорией.

Именно это и проверяли Федриччи с командой. Группа измеряла поляризацию и другие свойства в луче фотонов, и находила уровень пересечений, который нельзя объяснить моделями «невежества». Результат поддерживает альтернативную теорию – если объективная реальность существует, то существует и волновая функция. «Впечатляет, что команда смогла решить такую сложную задачу таким простым экспериментом»,- говорит Андреа Альберти, физик из Университета Бонна (Германия).

Вывод ещё не высечен в граните: поскольку детекторы улавливали лишь пятую часть использованных в тесте фотонов, приходится предполагать, что утерянные фотоны вели себя точно так же. Это сильное предположение, и сейчас группа работает над тем, чтобы уменьшить потери и выдать более определённый результат. В это время команда МАруни в Оксфорде работает с Университетом Нового Южного Уэльса (Австралия), чтобы повторить такой опыт с ионами, которых проще отслеживать. «В ближайшие шесть месяцев у нас будет неоспоримая версия этого эксперимента»,- говорит Маруни.

Но даже если их ждёт успех и победят модели «волновая функция как реальность», то и у этих моделей есть разные варианты. Экспериментаторам придётся выбирать один из них.

Одна из самых ранних интерпретаций была сделана в 1920-х годах французом Луи де Бройлем, и расширена в 1950-х американцем Дэвидом Бомом. Согласно моделям Бройля-Бома, у частиц есть определённое местоположение и свойства, но их ведёт некая «пилотная волна», которая и определяется как волновая функция. Это объясняет эксперимент с двумя щелями, поскольку пилотная волна может пройти через обе щели и выдать картину интерференции, хотя сам электрон, влекомый ею, проходит только через одну щель из двух.

В 2005 году эта модель получила неожиданную поддержку. Физики Эммануэль Форт, сейчас работающий в Институте Лангевина в Париже, и Ив Кодье из Университета Париж Дидро задали студентам простую, по их мнению, задачку: поставить эксперимент, в котором капли масла, падающие на поднос, будут сливаться из-за вибраций подноса. К удивлению всех вокруг капель начали образовываться волны, когда поднос вибрировал с определённой частотой. «Капли начали передвигаться самостоятельно по своим собственным волнам»,- говорит Форт. «Это был дуальный объект – частица, влекомая волной».

С тех пор форт и Кодье показали, что такие волны могут провести свои частицы в эксперименте с двумя щелями точно как предсказывает теория пилотной волны, и могут воспроизводить другие квантовые эффекты. Но это не доказывает существование пилотных волн в квантовом мире. «Нам говорили, что такие эффекты в классической физике невозможны,- говорит Форт. – И тут мы показали, что возможны».

Ещё один набор моделей, основанных на реальности, разработанный в 1980-х, пытается объяснить сильную разницу свойств у больших и малых объектов. «Почему электроны и атомы могут быть в двух местах одновременно, а столы, стулья, люди и коты – не могут»,-говорит Анджело Баси, физик Триестского университета (Италия). Известные как «коллапсные модели», эти теории говорят, что волновые функции отдельных частиц реальны, но могут терять свои квантовые свойства и приводить частицу в определённое положение в пространстве. Модели построены так, что шансы такого коллапса чрезвычайно малы для отдельной частицы, так что на атомном уровне доминируют квантовые эффекты. Но вероятность коллапса быстро растёт при объединении частиц, и макроскопические объекты полностью теряют свои квантовые свойства и ведут себя согласно законам классической физики.

Один из способов это проверить – искать квантовые эффекты у больших объектов. Если верна стандартная квантовая теория, то ограничений на размер нет. И физики уже провели эксперимент с двумя щелями при помощи больших молекул. Но если верны модели коллапса, то квантовые эффекты не будут видны при превышении определённой массы. Разные группы планируют искать эту массу, используя холодные атомы, молекулы, металлические кластеры и наночастицы. Они надеются обнаружить результаты в ближайшие десять лет. «Что классно с этими экспериментами, так это то, что мы будем подвергать квантовую теорию точным тестам там, где её ещё не проверяли»,- говорит Маруни.

Параллельные миры

Одна модель «волновая функция как реальность» уже известна и любима писателями-фантастами. Это многомировая интерпретация, выработанная в 1950-х Хью Эвереттом, который в то время был студентом Принстонского университета в Нью-Джерси. В этой модели волновая функция так сильно определяет развитие реальности, что при каждом квантовом измерении Вселенная расщепляется на параллельные миры. Иными словами, открывая коробку с котом, мы порождаем две Вселенные – одна с мёртвым котом, а другая – с живым.

Сложно разделить эту интерпретацию и стандартную квантовую теорию, поскольку их предсказания совпадают. Но в прошлом году Говард Вайзман из Гриффитского университета в Брисбейне с коллегами предложил модель мультивёрса, которую можно проверить. В их модели нет волновой функции – частицы подчиняются классической физике, законам Ньютона. А странные эффекты квантового мира появляются потому, что между частицами и их клонами в параллельных вселенных есть отталкивающие силы. «Отталкивающая сила между ними порождает волны, распространяющиеся по всем параллельным мирам»,- говорит Вайзман.

Используя компьютерную симуляцию, в которой взаимодействовали 41 вселенная, они показали, что модель грубо воспроизводит несколько квантовых эффектов, включая траектории частиц в эксперименте с двумя щелями. При увеличении количества миров рисунок интерференции стремится к реальному. Поскольку предсказания теории разнятся в зависимости от количества миров, говорит Вайзман, можно проверить, права ли модель мультивёрса – то есть, что никакой волновой функции нет, а реальность работает по классическим законам.

Поскольку в этой модели волновая функция не нужна, она останется жизнеспособной, даже если будущие эксперименты исключат модели с «невежеством». Кроме неё выживут другие модели, например, копенгагенская интерпретация, которые утверждают, что нет объективной реальности, а есть лишь вычисления.

Но тогда, как говорит Уайт, этот вопрос и станет объектом изучения. И хотя пока никто не знает, как это сделать, «что было бы реально интересным, так это разработать тест, проверяющий, есть ли у нас вообще объективная реальность».

В 1803 году Томас Юнг направил пучок света на непрозрачную ширму с двумя прорезями. Вместо ожидаемых двух полосок света на проекционном экране он увидел несколько полос, как если бы произошла интерференция (наложение) двух волн света из каждой прорези. Фактически именно в этот момент зародилась квантовая физика, вернее вопросы у её основы. В XX и XXI веках было показано, что не только свет, но любая одиночная элементарная частица и даже некоторые молекулы ведут себя как волна, как кванты, будто проходя через обе щели одновременно. Однако если поставить у щелей датчик, который определяет, что именно происходит с частицей в этом месте и через какую именно щель она все-таки проходит, то на проекционном экране появляются только две полосы, словно факт наблюдения (косвенного влияния) рушит волновую функцию и объект ведет себя как материя. ( видео)

Принципа неопределенности Гейзенберга – фундамент квантовой физики!

Благодаря открытию 1927 года тысячи ученых и студентов повторяют один и тот же простой эксперимент, пропуская лазерный луч через сужающуюся щель. Логично, видимый след от лазера на проекционном экране становится все уже и уже вслед за уменьшением зазора. Но в определенный момент, когда щель становится достаточно узкой, пятно от лазера вдруг начинает становиться шире и шире, растягиваясь по экрану и тускнея пока щель не исчезнет. Это самое очевидное доказательство квинтэссенции квантовой физики - принципа неопределенности Вернера Гейзенберга, выдающегося физика-теоретика. Суть его в том, что чем точнее мы определяем одну из парных характеристик квантовой системы, тем более неопределенней становится вторая характеристика. В данном случае, чем точнее мы определяем сужающейся щелью координаты фотонов лазера, тем неопределеннее становится импульс этих фотонов. В макромире мы точно также можем измерить либо точное местоположение летящего меча, взяв его в руки, либо его направление, но никак не одновременно, так как это противоречит и мешает друг другу. ( , видео)

Квантовая сверхпроводимость и эффект Мейснера

В 1933 году Вальтер Мейснер обнаружил интересное явление в квантовой физике: в охлажденном до минимальных температур сверхпроводнике магнитное поле вытесняется за его пределы. Это явление получило название эффект Мейснера. Если обычный магнит положить на алюминий (или другой сверхпроводник), а затем его охладить жидким азотом, то магнит взлетит и зависнет в воздухе, так как будет «видеть» вытесненное из охлажденного алюминия свое же магнитное поле той же полярности, а одинаковые стороны магнитов отталкиваются. ( , видео)

Квантовая сверхтекучесть

В 1938 году Петр Капица охладил жидкий гелий до близкой к нулю температуры и обнаружил, что у вещества пропала вязкость. Это явление в квантовой физике получило название сверхтекучесть. Если охлажденный жидкий гелий налить на дно стакана, то он все равно вытечет из него по стенкам. Фактически, пока гелий достаточно охлажденный для него нет пределов, чтобы разлиться, вне зависимости от формы и размера емкости. В конце XX и начале XXI веков сверхтекучесть при определенных условиях была также обнаружена у водорода и различных газов. ( , видео)

Квантовый туннелинг

В 1960 году Айвор Джайевер проводил электрические опыты со сверхпроводниками, разделенными микроскопической пленкой непроводящего ток оксида алюминия. Выяснилось, что вопреки физике и логике часть электронов все равно проходит через изоляцию. Это подтвердило теорию о возможности квантового туннельного эффекта. Он распространяется не только на электричество, но и любые элементарные частицы, они же волны согласно квантовой физике. Они могут проходить препятствия насквозь, если ширина этих препятствий меньше длины волны частицы. Чем препятствие уже, тем чаще частицы проходят сквозь них. ( , видео)

Квантовая запутанность и телепортация

В 1982 году физик Ален Аспэ, будущий лауреат Нобелевской премии, направил два одновременно созданных фотона на разнонаправленные датчики определения их спина (поляризации). Оказалось, что измерение спина одного фотона мгновенно влияет на положение спина второго фотона, который становится противоположным. Так была доказана возможность квантовой запутанности элементарных частиц и квантовая телепортация. В 2008 году ученым удалось измерить состояние квантово-запутанных фотонов на расстоянии 144 километров и взаимодействие между ними все равно оказалось мгновенным, как если бы они были в одном месте или не было пространства. Считается, что если такие квантово-запутанные фотоны окажутся в противоположных участках вселенной, то взаимодействие между ними все равно будет мгновенным, хотя свет это же расстояние преодолевает за десятки миллиардов лет. Любопытно, но согласно Эйнштейну для летящих со скоростью света фотонов времени тоже нет. Совпадение ли это? Так не думают физики будущего! ( , видео)

Квантовый эффект Зенона и остановка времени

В 1989 году группа ученых под руководством Дэвида Вайнленда наблюдала за скоростью перехода ионов бериллия между атомными уровнями. Выяснилось, что сам факт измерения состояния ионов замедлял их переход между состояниями. В начале XXI века в подобном эксперименте с атомами рубидия удалось достичь 30-кратного замедления. Все это является подтверждением квантового эффект Зенона. Его смысл в том, что сам факт измерения состояния нестабильной частицы в квантовой физике замедляет скорость ее распада и в теории может его полностью остановить. ( , видео англ.)

Квантовый ластик с отложенным выбором

В 1999 году группа ученых под руководствам Марлана Скали направляла фотоны через две щели, за которыми стояла призма, конвертирующая каждый выходящий фотон в пару квантово-запутанных фотонов и разделяя их на два направления. Первое отправляло фотоны на основной детектор. Второе направление отправляла фотоны на систему 50%-отражателей и детекторов. Выяснилось, если фотон из второго направления достигал детекторы определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как частицу. Если же фотон из второго направления достигал детекторы не определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как волну. Не только измерение одного фотона отражалось на его квантово-запутанной паре, но и это происходило вне расстояния и времени, ведь вторичная система детекторов фиксировала фотоны позже основного, как если бы будущее определяло прошлое. Считается, что это самый невероятный эксперимент не только в истории квантовой физики, но и вполне в истории всей науки, так как он подрывает многие привычные основы мировоззрения. ( , видео англ.)

Квантовая суперпозиция и кот Шредингера

В 2010 году Аарон О’Коннелл поместил небольшую металлическую пластину в непрозрачную вакуумную камеру, которую охладил почти до абсолютного нуля. Затем он придал импульс пластине, чтобы она вибрировала. Однако датчик положения показал, что пластина вибрировала и была спокойна одновременно, что точно соответствовало теоретической квантовой физике. Этим впервые был доказан принцип суперпозиции на макрообъектах. В изолированных условиях, когда не происходит взаимодействия квантовых систем, объект может одновременно находиться в неограниченном количестве любых возможных положений, как если бы он больше не был материальным. ( , видео)

Квантовый Чеширский кот и физика

В 2014 году Тобиас Денкмайр и его коллеги разделили поток нейтронов на два пучка и провели серию сложных измерений. Выяснилось, что при определенных обстоятельствах нейтроны могут находиться в одном пучке, а их же магнитный момент в другом пучке. Таким образом был подтвержден квантовый парадокс улыбки Чеширского кота, когда частицы и их свойства могут находиться по нашему восприятию в разных частях пространства, как улыбка отдельно от кота в сказки «Алиса в стране чудес». В очередной раз квантовая физика оказалась загадочней и удивительней любой сказки! ( , видео англ .)

Спасибо за чтение! Теперь вы стали немного умнее и от этого наш мир чуточку посветлел. Поделитесь ссылкой на эту статью с друзьями и мир станет еще лучше!

Предупреждаю сразу: этот цикл статей заметно отличается от традиционного введения в квантовую механику.

Во-первых , я не буду цитировать Ричарда Фейнмана, однажды заявившего, что «это нормально - не понимать квантовую механику, потому что никто её не понимает». Когда-то это было так, но времена меняются.

Я не скажу: «Квантовую механику невозможно понять, к ней просто нужно привыкнуть». (Эту цитату приписывают Джону фон Нейману; он жил в те дремучие времена, когда никто и в самом деле не понимал квантовую механику.)

Нельзя заканчивать объяснение словами «Если что-то непонятно, так и должно быть». Нет, так не должно быть . Может, проблема в вас. Может - в вашем учителе. В любом случае, её надо решать , а не сидеть сложа руки и успокаивать себя тем, что все остальные тоже ничего не понимают.

Я не буду говорить, что квантовая механика - это нечто странное , запутанное или недоступное для человеческого понимания . Да, она контринтуитивна - но это беда исключительно нашей интуиции. Квантовая механика возникла задолго до Солнца, планеты Земля или человеческой цивилизации. Она не собирается меняться ради вас. Вообще, не существует обескураживающих фактов , есть только теории, обескураженные фактами ; а если теория не совпадает с практикой, это не делает ей чести.

Всегда стоит рассматривать реальность как совершенно обыденную вещь. С начала времён во Вселенной не случилось ничего необычного.

Наша цель - научиться чувствовать себя как дома в этом квантовом мире. Потому что мы и так дома.

На протяжении всего этого цикла я буду говорить о квантовой механике как о самой обычной теории; а там, где интуитивное представление о мире не совпадает с ней, я буду высмеивать интуицию за несоответствие реальности.

Во-вторых , я не собираюсь следовать традиционному порядку изучения квантовой механики, копирующему порядок, в котором её открывали.

Обычно всё начинается с рассказа о том, что материя иногда ведёт себя как кучка маленьких бильярдных шаров, сталкивающихся между собой, а иногда - как волны на поверхности бассейна. Это сопровождается несколькими примерами, иллюстирующими оба взгляда на материю.

Раньше, когда всё это только зарождалось и никто не имел ни малейшего понятия о математических основах физики, учёные всерьёз считали, что всё состоит из атомов, ведущих себя примерно как бильярдные шары. А потом они стали считать, что всё состоит из волн. А потом они опять вернулись к бильярдным шарам. Всё это привело к тому, что учёные окончательно запутались, и только через несколько десятилетий - к концу девятнадцатого века - им удалось расставить всё по своим местам.

Если применить этот исторический достоверный подход к обучению современных студентов (как сейчас и поступают), с ними закономерно случится то же, что случилось с ранними учёными, а именно - они впадут в полное и абсолютное замешательство . Рассказывать студентам, изучающим физику, о корпускулярно-волновом дуализме, это то же самое, что начинать курс химии лекцией о четырёх стихиях.

Электрон не похож ни на бильярдный шар, ни на гребень океанской волны. Электрон - это совершенно другой объект с математической точки зрения, и он остаётся таким при любых обстоятельствах . А если вы будете упорствовать в своём стремлении считать его и тем, и тем, как вам удобнее , предупреждаю: за двумя зайцами погонишься - ни одного не поймаешь.

Это не единственная причина, по которой исторический порядок - не лучший выбор. Давайте проследим за гипотетическим процессом с самого начала : люди замечают, что они окружены другими животными - внутри животных, оказывается, есть органы - а органы, если присмотреться внимательнее, состоят из тканей - под микроскопом видно, что ткани состоят из клеток - клетки состоят из протеинов и прочих химических соединений - химические соединения состоят из атомов - атомы состоят из протонов, нейтронов и электронов - а последние гораздо проще и понятнее животных, с которых всё началось, но были открыты на десятки тысяч лет позже .

Физику не начинают проходить с биологии. Тогда почему её нужно начинать с обсуждения лабораторных экспериментов и их результатов, которые даже в случае простейших опытов являются следствием множества сложных и запутанных процессов?

С одной стороны, я могу понять, почему во главу угла ставится эксперимент. Мы же о физике говорим, в конце концов.

С другой стороны, давать студентам в руки сложный математический аппарат только для того, чтобы они могли проанализировать простой опыт - это уже чересчур . Программистов, например, сначала учат складывать две переменные, а только потом - писать многопоточные приложения; и плевать на то, что вторые «ближе к реальной жизни».

Классическая механика не следует явным образом из квантовой механики. Более того, классическая механика находится на гораздо более высоком уровне. Сравните атомы и молекулы с кварками: миллионы известных науке химических веществ, сотня химических элементов, и всего шесть кварков. Сначала лучше понять простое, а только потом переходить к сложному.

Наконец , я буду рассматривать квантовую механику со строго реалистической позиции - наш мир является квантовым, наши уравнения описывают территорию, а не её карту, и привычный нам мир неявным образом существует в квантовом мире. Если среди моих читателей есть антиреалисты - пожалуйста , придержите свои комментарии. Квантовую механику гораздо труднее понять и представить, если сомневаешься в её справедливости. Я поговорю об этом подробнее в одной из следующих статей.

Я думаю, что той точки зрения, которую я буду излагать в этом введении, придерживается большинство физиков-теоретиков. Но вы всё же должны знать, что это не единственная возможная точка зрения, и немалая доля учёных сомневается в верности реалистической позиции. Хоть я и не собираюсь уделять внимание каким-либо другим теориям прямо сейчас , я чувствую себя обязанным упомянуть о том, что они есть .

Подводя итог , моя цель - научить вас думать как коренной житель квантового мира , а не как турист поневоле .

Покрепче вцепитесь в реальность. Мы начинаем.

Конфигурации и амплитуды

Посмотрите на рис. 1. В точке A находится полупосеребрённое зеркало, а в точках B и C - два детектора фотонов.

Этот простой эксперимент в своё время заставил учёных поломать головы. Дело в том, что в половине случаев фотон, выпущенный в сторону зеркала, регистрировался первым детектором, а в половине - на вторым. И учёные - внимание, приготовьтесь смеяться - предполагали, что зеркало то пропускало фотон, то отражало его.

Ха-ха-ха, представьте себе зеркало, которое может само выбирать, пропускать ему фотон или не пропускать! Если вы и можете это представить, то все равно не делайте этого - а не то вы запутаетесь так же, как и те учёные. Зеркало ведёт себя абсолютно одинаково в обоих случаях.

Если бы мы попробовали написать компьютерную программу, симулирующую этот эксперимент (а не просто предсказывающую результат), она бы выглядела примерно так…

В начале программы мы объявляем переменную, хранящую в себе определённый математический объект - конфигурацию . Она представляет некое описание состояния мира - в данном случае, «один фотон летит в точку А».

На самом деле конфигурация описывается комплексным числом (напомню, что комплексные числа имеют вид (a + bi ), где a и b - действительные числа, а i - мнимая единица, т.е. такое число, что i ² = -1). Нашей конфигурации «фотон летит в точку A » тоже соответствует какое-то число. Пусть это будет (-1 + 0i ). В дальнейшем мы будем называть число, соответствующее конфигурации, её амплитудой .

Введём ещё две конфигурации: «фотон летит из A в точку B » и «фотон летит из A в точку C ». Мы пока не знаем амплитуды этих конфигураций; им будут присвоены значения в ходе выполнения программы.

Посчитать амплитуды можно, применив правило, по которому работает зеркало, к начальной конфигурации. Не вдаваясь в подробности, можно считать, что правило выглядит так: «умножить на 1, когда фотон пролетает; умножить на i , когда фотон отражается». Применим правило: амплитуда конфигурации «фотон летит в B » равняется (-1 + 0i ) × i = (0 + -i ), а амплитуда конфигурации «фотон летит в C » равняется (-1 + 0i ) × 1 = (-1 + 0i ). Других конфигураций на рис. 1 нету, так что мы закончили.

В принципе, можно считать «первый детектор регистрирует фотон» и «второй детектор регистрирует фотон» отдельными конфигурациями, но это ничего не меняет; их амплитуды будут равны амплитудам двух предыдущих конфигураций соответственно. (На самом деле их ещё надо домножить на множитель, равный расстоянию от A до детекторов, но мы просто предположим, что все расстояния в нашем эксперименте являются множителями единицы.)

Итак, вот конечное состояние программы:

  • «фотон летит в A »: (-1 + 0i )
  • «фотон летит из A в B »: (0 + -i )
  • «фотон летит из A в C »: (-1 + 0i )

И, возможно:

  • «сработал первый детектор»: (0 + -i )
  • «сработал второй детектор»: (-1 + 0i )

Разумеется, сколько бы раз мы ни запускали программу, конечное состояние останется таким же.
Теперь, по довольно сложным причинам, в которые я пока не буду вдаваться, не существует простого способа измерить амплитуду конфигурации. Состояние программы скрыто от нас.

Что же делать?

Хоть мы и не можем измерить амплитуду непосредственно, кое-что у нас есть - а именно, волшебная измерительная штуковина, которая может сообщить нам квадрат модуля амплитуды конфигурации. Другими словами, для амплитуды (a + bi ) штуковина ответит числом (a² + b²).

Точнее было бы сказать, что волшебная штуковина находит всего лишь отношение квадратов модулей друг к другу. Но даже этой информации оказывается достаточно, чтобы понять, что происходит внутри программы и по каким законам она работает.

С помощью штуковины мы можем легко узнать, что квадраты модулей конфигураций «сработал первый детектор» и «сработал второй детектор» равны. А проведя некоторые более сложные эксперименты, мы сможем также узнать отношение самих амплитуд - i к 1.

Кстати, а что это за волшебная измерительная штуковина такая?

Ну, когда такие эксперименты проводят в реальной жизни, в качестве волшебной штуковины служит то, что эксперимент проводят пару тысяч раз и просто считают, сколько раз фотон оказался в первом детекторе, а сколько - во втором. Отношение этих значений и будет отношением квадратов модулей амплитуд. Почему это будет так - вопрос другой, гораздо более сложный. А пока можно пользоваться штуковиной и без понимания того, как да почему она работает. Всему своё время.

Вы можете спросить: «А зачем вообще нужна квантовая теория, если её предсказания совпадают с предсказаниями „бильярдной” теории?» Есть две причины. Во-первых, реальность , что бы вы там ни думали, всё-таки подчиняется квантовым законам - амплитуды, комплексные числа и всё такое. А во-вторых, «бильярдная» теория не работает для любого мало-мальски сложного эксперимента. Хотите пример? Пожалуйста.

На рис. 2 вы можете видеть два зеркала в точках B и C , и два полу-зеркала в точках A и D . Позже я объясню, почему отрезок DE проведён пунктиром; на расчётах это никак не скажется.

Давайте применим правила, которые мы уже знаем.

В начале у нас есть конфигурация «фотон летит в A », её амплитуда - (-1 + 0i ).

Считаем амплитуды конфигураций «фотон летит из A в B » и «фотон летит из A в C »:

  • «фотон летит из A в B » = i × «фотон летит в A » = (0 + -i )
  • «фотон летит из A в C » = 1 × «фотон летит в A » = (-1 + 0i )

Интуитивно ясно, что обычное зеркало ведёт себя как половина полу-зеркала: всегда отражает фотон, всегда умножает амплитуду на i . Итак:

  • «фотон летит из B в D » = i × «фотон летит из A в B » = (1 + 0i )
  • «фотон летит из C в D » = i × «фотон летит из A в C » = (0 + -i )

Важно понять, что «из B в D » и «из C в D » - это две разные конфигурации. Нельзя просто написать «фотон летит в D », потому что от угла, под которым этот фотон приходит в D , зависит то, что с ним случится дальше.

  • B в D », равная (1 + 0i ):
    • умножается на i , и результат (0 + i D в E »
    • умножается на 1, и результат (1 + 0i ) засчитывается в пользу конфигурации «фотон летит из D в F »
  • амплитуда конфигурации «фотон летит из C в D », равная (0 + -i ):
    • умножается на i , и результат (1 + 0i ) засчитывается в пользу конфигурации «фотон летит из D в F »
    • умножается на 1, и результат (0 + -i ) засчитывается в пользу конфигурации «фотон летит из D в E »
  • «фотон летит из D в E » = (0 + i ) + (0 + -i ) = (0 + 0i ) = 0
  • «фотон летит из D в F » = (1 + 0i ) + (1 + 0i ) = (2 + 0i )

Отношение квадратов модулей амплитуд - 0 к 4; из расчётов следует, что первый детектор вообще не будет срабатывать! Поэтому-то отрезок DE и был проведён пунктиром на рис. 2.

Если бы полу-зеркала отражали или пропускали фотон случайным образом, оба детектора реагировали бы примерно с одинаковой частотой. Но это не совпадает с результатами экспериментов. Вот и всё.
Вы могли бы возразить: «А вот и не всё! Предположим, например, что когда зеркало отражает фотон, с ним происходит что-то такое, что второй раз он уже не отразится? И, наоборот, когда зеркало пропускает фотон, в следующий раз ему придётся отразиться.»

Во-первых, бритва Оккама. Не стоит выдумывать сложное объяснение, если уже существует простое (если, конечно, считать квантовую механику простой …) А во-вторых, я могу придумать другой опыт, который опровергнет и эту альтернативную теорию.

Поместим маленький непрозрачный объект между B и D , чтобы амплитуда конфигурации «фотон летит из B в D » всегда равнялась нулю.

Теперь амплитуда конфигурации «фотон летит из D в F » равна (1 + 0i ), а амплитуда конфигурации «фотон летит из D в E » - (0 + -i ). Квадраты модулей равны 1. Это значит, что в половине случаев будет срабатывать первый детектор, а в половине - второй.

Это невозможно объяснить, если считать, что фотон - это маленький бильярдный шарик, который отражается от зеркал.

Дело в том, что об амплитуде нельзя думать, как о вероятности. В теории вероятностей, если событие X может произойти или не произойти, то вероятность события Z равна P(Z |X )P(X ) + P(Z X )P(¬X ), где все вероятности положительны. Если вы знаете, что вероятность Z при условии, что X случилось, равна 0.5, а вероятность X - 0.3, то полная вероятность Z по меньшей мере 0.15, независимо от того, что произойдёт, если X не случится. Не бывает отрицательных вероятностей. Возможные и невозможные события не могут аннулировать друг друга. А амплитуды - могут.

Вот пример неправильного мышления: «Фотон летит в B или в C , но он мог полететь по-другому, и это влияет на вероятность того, что он полетит в E …»

События, которые не случились, не имеют никакого влияния на мир. Единственное, что может повлиять на мир - это наше воображение. «О боже, эта машина чуть не сбила меня», думаете вы, и решаете уйти в монастырь, чтобы больше никогда не встречаться с опасными машинами. Но реально по-прежнему не само событие, а лишь ваше воображение, содержащееся в вашем мозгу - который можно из вас достать, пощупать и положить назад, чтобы убедиться, что он вполне реален.

Реально всё, что влияет на мир. (Если вы полагаете, что это не так, попробуйте дать определение слову «реальный».) Конфигурации и амплитуды непосредственно влияют на мир, так что они тоже реальны. Сказать, что конфигурация - это «то, что могло случиться», так же странно, как сказать, что стул - это «то, что могло случиться».

А что это тогда - конфигурация?

Продолжение следует.

На самом деле всё немного сложнее, чем вам могло показаться после прочтения этой статьи.
Каждая конфигурация описывает все частицы во Вселенной. Амплитуда - это непрерывное распределение по всему пространству конфигураций, а не дискретное, как мы рассматривали сегодня. И в самом деле, фотоны же не телепортируются из одного места в другое мгновенно , а каждое различное состояние мира описывается новой конфигурацией. В конце концов мы и до этого доберёмся.

Если вы ничего не поняли из этого абзаца, не беспокойтесь, я всё объясню. Потом.

Вверх