Современное представление о строении генома кратко. Что такое ген. Современные представления о гене. Задания для самостоятельной работы

Экспрессия гена – это реализация генетической информации, закодированной в ДНК, путём её транскрипции и трансляции. Транскрипция – первый этап экспрессии генов. Заключается она в переводе информации, содержащейся в гене на РНК путём синтеза последней на одной нити ДНК гена. В результате транскрипции синтезируются все виды РНК – информационная (иРНК), рибосомальная (рРНК), транспортная (тРНК) и другие (регуляторные, малые ядерные и пр.). Все они принимают участие в экспрессии генов, но только иРНК переносит информацию о строении белка с нуклеотидного «текста» ДНК на аминокислотный «текст» белка. Все остальные виды РНК обеспечивают эффективное осуществление этого процесса.

Суть транскрипции заключается в следующем: специальные ферменты подготавливают молекулу ДНК в области гена к транскрипции (раскручивают спираль ДНК, разрывают водородные связи между нитями и т.д.). Фермент ДНК-зависимая РНК-полимераза синтезирует РНК на матричной нити ДНК от стартовой точки до точки окончания транскрипции. Синтез РНК заключается в последовательном наращивании в ней нуклеотидов комплементарных матричной нити ДНК. Исключение составляет урацил РНК, который вставляется против аденина матричной нити ДНК.

В транскрипции принимают участие множество ферментов, но непосредственно синтез РНК осуществляет фермент ДНК-зависимая РНК-полимераза (или просто РНК-полимераза) . У прокариот все виды РНК (иРНК, рРНК, тРНК) синтезируются одной РНК-полимеразой, а у эукариот они синтезируются тремя разными ферментами: РНК-полимеразойI, РНК-полимеразойIIи РНК-полимеразойIII.

Информационные РНК у эукариот транскрибируются РНК-полимеразой II .

Транскрипция это сложный многоэтапный процесс и одна РНК-полимераза не в состоянии полностью обеспечить его. На разных этапах транскрипции к РНК-полимеразе присоединяются и, наоборот, отщепляются различные белковые субъединицы, которые модифицируют её активность в соответствии с требованиями данного этапа.

Транскрипция, как и все процессы матричного синтеза у про- и эукариот, состоит из трёх этапов – инициации, элонгации и терминации. В дальнейшем процесс транскрипции будем рассматривать только у эукариот Рассмотрим самый первый этап транскрипции.

3. Периоды транскрипции.

а. Инициация.

Инициация – это подготовительный этап. У про- и эукариот в этой стадии происходят множество синхронизированных во времени процессов. Рассмотрим два из них.

1. Формирование инициаторного комплекса.

2. Образование «транскрипционного глазка».

У про- и эукариот формирование инициаторного комплекса происходит на промоторе . Сама РНК-полимераза, как правило, не может связаться с промотором. Поэтому вначале специальный белок взаимодействует со специфической областью на промоторе. В этой области располагается определённая последовательность нуклеотидов. Она различна у про- и эукариот. У прокариот эта последовательность носит названиебокс Прибнова . У эукариот в специфической области промотора довольно часто встречается следующая последовательность нуклеотидов – ТАТА. Отсюда и название этого участка промотора –ТАТА-бокс . К специальному белку, осевшему на промоторе, присоединяется РНК-полимераза и целый ряд других белков, которые участвуют в подготовке синтеза РНК. Т. обр. на первом этапе на промоторе формируется сложный комплекс, который состоит специального белка осевшего на промотор, РНК-полимеразы и нескольких белков (у эукариот их больше), которые носят названиетранскрипционные факторы (ТФ). Их несколько – ТФ1, ТФ2 ТФ3 и т.д.(рис. 53). У эукариот этих факторов намного больше, чем у прокариот. Совокупность состоящая из специального белка, транскрипционных факторов и РНК-полимеразы носит названиеинициаторный комплекс . После его образования начинаетсяформирование вилки транскрипции . Ферменты комплекса (ТФ1,ТФ2 и др.)раскручивают спираль ДНК,разрывают водородные связи между нитями. Нити расходятся. В результате формируетсятранскрипционный «глазок» с вилкой транскрипции. Разошедшие нити этой вилки прочно фиксируются специальными белками (SSB), которые могут не входить в инициаторный комплекс (рис. 54).

РНК-полимераза

Специальный белок

Промотор

Инициаторный комплекс

Промотор

Т А Т А

Рис. 53. Присоединение РНК-полимеразы и транскрипционных факторов к ТАТА-боксу промотора у эукариот.

Транскрипционный «глазок»

Белки фиксирующие

разошедшие нити

5’ Смысловая нить 3’

3’ Матричная нить 5’

РНК-полимераза и

РНК белки

Рис. 54. Транскрипционный «глазок».

У прокариот инициаторный комплекс, состоит примерно из пяти субъединиц-полипептидов и называется голофермент (холофермент) . В комплексе имеется сигма-субъединица (СС) или сигма-фактор. Это не постоянная единица комплекса. Она может выходить из комплекса, тогда комплекс называется кор-фермент и вновь входить в него. Функция СС заключается в том, что он первый связывается с промотором, затем к нему присоединяется кор-фермент. Без СС кор-фермент практически не взаимодействует с промотором (или взаимодействует очень слабо). Другая функция СС заключается в том, что этот белок приводит к стойким изменениям в структуре других полипептидов комплекса, в результате чего голофермент приобретает способность раскручивать спираль ДНК, разрывать водородные связи между нитями ДНК т.е.формировать вилку транскрипции . СС находится в голоферменте только на этапе инициации. Обеспечив связывание комплекса с промотором, она через некоторое время после начала транскрипции покидает комплекс и присоединяется к новым кор-ферментам (см. далее).

+ =

Рис. 55. РНК-полимераза в зависимости от присоединения к ней сигма субъединицы будет иметь различную структуру и функцию.

У эукариот инициаторный комплекс более сложный, чем у прокариот. Помимо фермента РНК-полимеразы в него входят более 10 полипептидных субъединиц. У них различная функция. Часть из них, также как и СС прокариот, связываются с промотором. Затем на них осаждается РНК-полимераза. Другие субъединицы участвуют в формировании вилки транскрипции и т.д.

Следует отметить, что фермент РНК-полимераза про- и эукариот имеет активный центр, который контролирует связывание нуклеотидов первичного транскрипта между собой. В случае его блокады активность фермента падает. Некоторые антибиотики, например рифампицин и его производные подавляют инициацию транскрипции специфически связываясь с активным центром в РНК-полимеразе. Интересно то, что некоторые бактерии оказались не чувствительны к антибиотику. Исследования показали, что у таких бактерий РНК-полимераза имеет небольшое изменение в структуре. Это изменение не мешает синтезировать олигонуклеотид, но не даёт возможности соединиться с активным центром антибиотику.

После образования транскрипционного глазка начинается следующий этап синтеза РНК – элонгация.

б. Элонгация.

Чаще всего начинается с присоединения к транскрипционному комплексу специальных белков – факторов элонгации, которые запускают процесс синтеза РНК. Точка на ДНК, где начинается синтез РНК называется стартовой точкой.

РНК-полимераза вместе с белками двигается по нити ДНК последовательно раскручивая спираль ДНК. После синтеза РНК нити ДНК вновь конденсируются. Деконденсированной (свободной) в транскрипционном глазке находится нить ДНК протяженностью около 20 нуклеотидов. Синтез молекулы РНК идёт от 5 ’ конца синтезированной РНК к 3 ’ её концу. Т.е. при репликации (синтез ДНК) и при транскрипции наращивание новых нуклеотидов идёт с 3 ’ конца синтезируемой цепи ДНК или РНК. Нить ДНК, на которой синтезируется РНК, называется плюс (+) нитью, кодогенной, антисмысловой, матричной цепью (рис. 56). Скорость синтеза РНК – примерно 30 нуклеотидов в секунду.

РНК-полимераза Вилка транскрипции Терминатор

Направление синтеза

Промотор

5 конец РНК3 ’ конец РНК

Рис. 56. Элонгация.

Как правило, у прокариот для всех генов одной хромосомы матричной является одна и та же цепь ДНК. У эукариот матричными могут быть обе нити ДНК.

в. Терминация.

Несмотря на многочисленные исследования последнего этапа транскрипции ясного представления о его механизме пока не получено. Если обобщить имеющиеся, то можно сделать вывод что у большинства про- и эукариот терминация осуществляется несколькими способами. Сущность их одна – в зоне терминатора располагаются специальные элементы, которые останавливают транскрипцию. Таких элементов в настоящее время найдено несколько. Назовём только наиболее исследованные. Их три.

1. В зоне терминации располагается область богатая ГЦ парами .

Химические связи этих нуклеотидов с комплементарными нуклеотидами в транскрипте существенно слабее, чем связи АТ. Это облегчает отрыв синтезированной РНК от ДНК.

2. В терминаторе имеются «шпильки ДНК».

Другой механизм, связан с имеющимися в области терминатора последовательностями нуклеотидов, которые носят название – нвертированные повторы (см. рис. 57, А). Это два участка молекулы ДНК, следующие друг за другом, имеющие одинаковую последовательность нуклеотидов, но расположенные в противоположной (обратной) ориентации. Так например, последовательности, представленные на рисунке 57 (А), являются инвертированными, так как при их чтении от 5’ к 3’ концу она идентична в обоих цепях. Такое расположение нуклеотидов в ДНК терминатора приводит к тому, что при их считывании на РНК образуются участки с комплементарными последовательностями нуклеотидов (рис. 57, Б). Последние соединяются между собой и формируют, фигуру, которая носит название «шпилька» (см. рис. 57, В). Эта шпилька, сформированная на пути РНК-полимеразы, прекращает её движение. В некоторых случаях «шпильку» распознаёт специальный белок, который движется по вновь синтезированной цепочки РНК вслед за РНК-полимеразой. Обнаружив шпильку, белок прекращает движение РНК-полимераза.

У прокариотов инвертированные повторы обнаруживаются практически в каждом терминаторе. В последнее время появились данные о более сложных механизмах терминации транскрипции у эукариот.

3. Бессмысленные (нонсенс) кодоны . Они не кодируют никакую аминокислоту. Предполагают, что опознав их РНК-полимераза прекращает синтез РНК.

Последовательность нуклеотидов в ДНК, которая находится между стартовой точкой и терминатором называется единицей транскрипции. Транскрибируется, как правило, одна из двух цепей ДНК. Могут, но редко транскрибироваться обе цепи одного гена.

Формирующаяся РНК на нити ДНК носит название транскрипт или РНК-транскрипт.

краткое содержание других презентаций

«Закономерности моногибридного скрещивания» - Анализирующие скрещивания. Наследование окраски цветков гороха. Цитологические (цитогенетические) основы наследования признаков. Моногибридное скрещивание. Наследование окраски ягод земляники. Возвратные скрещивания. Доминантный вариант признака. Гибриды первого поколения. Насыщающие скрещивания. Неполное доминирование. Наследование окраски семян гороха.

«Хромосомная теория Моргана» - Нарушение сцепления генов. Хромосомы томата. Скрещивание чистых линий дрозофилы. Скрещивание гибридов. Закон сцепления. Самки и самцы. Группа сцепления. Хромосомная теория наследственности. Морганида. Частота кроссинговера. Профаза I мейоза. Сцепленные гены. Мушка дрозофила. Опыты Т.Моргана. Морган. Участок генетической карты. Гибриды второго поколения. Хромосомная теория. Кроссоверное потомство. Генетическая карта.

«Закон Моргана» - В каких случаях выполняется закон Моргана. Некроссоверные гаметы. Вероятность расхождения двух генов по разным хромосомам. Доминантные гены катаракты, элиптоцитоза и многопалости. 1% кроссинговера. Группа сцепления. Сцепление генов может нарушаться в процессе кроссинговера. Задачи на полное сцепление. Появление особей с перекомбинированными признаками. Перекомбинированные признаки. Гены, локализованные в одной хромосоме.

«Взаимодействие неаллельных генов» - Аддитивная полимерия. Термины. Наличие пигмента. Доминантный эпистаз. Полимерное взаимодействие генов. Расщепление. Взаимодействие неаллельных генов. Расщепление по фенотипу. Комплементарное взаимодействие. Типы взаимодействия неаллельных генов. Интенсивность окрашивания. Доминантный эпистаз на примере наследования масти у лошадей. Розовидный гребень. Эпистатическое взаимодействие генов. Рецессивный эпистаз на примере наследования окрашивания у мышей.

«Родословная» - Цели и задачи исследования. Группы крови. Родословная. Родословная семьи. В родословной прослеживается аутосомно-рецессивный тип наследования. Наследование групп крови у человека. Генеалогический метод генетики человека. Цвет волос. Наследование формы волос. Форма волос. Анализ родословной. Неспособность различать отдельные цвета.

«Генетика Менделя» - Основы генетики. Атмосфера сотрудничества. Умозаключения. Фенотип. Задача с использованием 3-го закона Менделя. Дигибридное скрещивание. Третий закон Менделя. Длинношерстность. Грегор Мендель. Иллюстрации первого и второго законов Менделя.

хромосома любого организма, будь то бактерия или человек, содержит длинную непрерывную цепь ДНК, вдоль которой расположено множество генов. Установление количества генов, их точного местоположения на хромосоме и детальной внутренней структуры, включая знание полной нуклеотидной последовательности, - задача исключительной сложности и важности.

Организация генома.

Различные организмы резко отличаются по количеству ДНК, составляющей их геномы. У вирусов в зависимости от их величины и сложности размер генома колеблется от нескольких тысяч до сотен пар нуклеотидов. Гены в таких просто устроенных геномах расположены один за другим и занимают до 100% длины соответствующей нуклеиновой кислоты(РНК и ДНК). Для многих вирусов становлена полная нуклеотидная последовательность ДНК. У бактерий размер генома значительно больше. У кишечной палочки единственная нить ДНК – бактериальная хромосома состоит из 4,2х106(6 степень) пар нуклеотидов. Более половины этого количества состоит из структурных генов, т.е. генов, кодирующих определенные белки. Остальную часть бактериальной хромосомы составляют неспособные транскрибироваться нуклеотидные последовательности, функция которых не вполне ясна. Подавляющее большинство бактериальных генов уникальны, т.е. представлены в геноме один раз. Исключение составляют гены транспортных и рибосомальных РНК, которые могут повторяться десятки раз.

Геном эукариот, особенно высших, резко превышает по размерам геном прокариот и достигает, как отмечалось, сотен миллионов и миллиардов пар нуклеотидов. Количество структурных генов при этом возрастает не очень сильно. Количество ДНК в геноме человека достаточно для образования примерно 2 млн. структурных генов. Реально имеющееся число оценивается как 50-100 тыс. генов, т.е. в 20-40 раз меньше того, что могло бы кодироваться геномом такого размера. Следовательно, приходится констатировать избыточность генома эукариот. Причины избыточности в настоящее время в значительной степени прояснились: во-первых, некоторые гены и последовательности нуклеотидов многократно повторены, во-вторых, в геноме существует много генетических элементов, имеющих регуляторную функцию, в-третьих, часть ДНК вообще не содержит генов

Регуляция работы генов

Откуда клетка знает, какой белок производить и в каком количестве?

В начале каждого гена расположен сегмент ДНК, который содержит контролирующие элементы именно этого гена. Этот сегмент называется промотор. Он выполняет функции сторожевой башни, поднимая флаг, то есть подавая сигнал контролируемому им гену. Возьмем, например, выработку инсулина (который мы производим, чтобы обеспечить сжигание сахара в крови). Когда в клетке появляется информационная молекула с сообщением больше инсулина, вырабатывается молекула-посредник, которая связывается с инсулиновой сторожевой башней. После этого рычажок сторожевой башни перемещается и открывает путь считыванию инсулинового гена.

Как информация, содержащаяся в ДНК, превращается в белки в нужное время?

Каждый ген состоит из трех основных компонентов: сторожевой башни (промотор), информационного блока и поли-А сигнального элемента.

Если в клетке недостаточно какого-то протеина, то ядру направляется сообщение найти соответствующий ген. Если сторожевая башня признает полученное сообщение, то будет послан сигнал открыть ворота информационному блоку. Информация тут же копируется - или считывается (транскрибируется) - в нитевидную молекулу, которая называется РНК. РНК очень похожа на ДНК, только она представляет собой одну цепочку, а не две. После того, как информация была скопирована, к концу молекулы прикрепляется хвост в 200 нуклидов типа А. Этот процесс называется полиаденилированием , а начинает его поли-А сигнал, расположенный в конце гена. Поли-А хвост помогает сохранить информационные РНК в ядре на ограниченное время. После этого копии гена (РНК) выходят из ядра в цитоплазму и связываются с мини-органеллами - рибосомами, выполняющими функцию синтеза белков из аминокислот. Рибосомы считывают код с РНК и связывают аминокислоты в полипептидную цепочку белковой молекулы.

Ни одна клетка никогда не сможет использовать всю информацию, содержащуюся в ДНК. Клетки разделяют работу между собой - они специализируются. Клетки мозга не станут вырабатывать инсулин, клетки печени не будут производить слюну, так же как и кожные клетки не станут строить костную ткань.

Фомина Наталья Анатольевна,

учитель биологии МБОУ «2-Михайловская СОШ»

Сорочинского городского округа Оренбургской области

Биология

10 класс

УМК Общая биология. 10-11 класс. Авторы: И. Б. Агафонова, В. И. Сивоглазов, В.Б.Захаров

Уровень обучения: базовый

Тема урока : Современное представление о гене и геноме.

Общее количество часов, отведенное на изучение темы : 1час

Место урока в системе уроков по теме: №14 гл.3 Организм

Цель урока :познакомить учащихся с современными представлениями о гене и геноме.

Задачи урока:

Образовательные:

    обеспечить развитие у школьников умения ставить цель и планировать свою деятельность;

    сформировать представления учащихся о строении гена, геноме

    познакомить учащихся с особенностями взаимодействия генов

Развивающие:

    развивать логическое мышление, умение проводить аналогии, сравнивать, абстрагироваться.

    продолжить формировать умения пользоваться учебником и таблицами, самостоятельно составлять схемы решения задач.

Воспитательные:

    формировать культуру биологической речи и сознательной дисциплины;

    воспитать потребность в знаниях, целеустремленности, наблюдательности.

Планируемые результаты

Коммуникативные: высказывание своей точки зрения, умение задавать вопросы, сотрудничать в паре при решении проблемных вопросов;

Регулятивные: действие целеполагания, умение преобразовывать практические задачу в познавательную, умение высказывать предположение и его доказать, умение рефлексировать свои действия по цели;

Познавательные: умение определить понятие «ген», «геном», построение логических цепочек с установлением связей между фенотипом и генотипом

Личностные: развитие навыков сотрудничества со сверстниками, освоение основ толерантного и межкультурного взаимодействия в коллективе; развитие самостоятельности; формирование осознанной мотивации к выполнению задания; формирование интеллектуальных умений (доказывать, строить рассуждения, анализировать, сравнивать, делать выводы).

Техническое обеспечение урока: компьютер, мультемедийный проектор, экран

Дополнительное методическое и дидактическое обеспечение урока: презентация

«Современные представления о гене и геноме», карточки со схемами задач, видеоролик «Строение гена» ссылка на ресурс

Содержание урока

    Оргмомент . Проверка готовности к уроку.

2 Постановка целей и задач. Мотивация учебной деятельности. Запись на доске: По мнению ученых, ели ХХ век был веком генетики, то ХХI век будет веком ….. Ребята! Сегодняшний урок хотелось бы начать со слов написанных на доске, в конце урока мы должны закончить цитату.

3. Актуализация знаний . “Мозговая атака”

а) Дайте определение понятиям: ген, генотип, фенотип, хромосома, гомозигота, гетерозигота, ...
б) Кто является основоположником генетики?
в) Назовите год становления генетики? Кто из ученых переоткрыл законы Менделя?
г) Сформулируйте законы Г. Менделя?
д)Что такое ген и генотип?

Е) Что вам известно о современных достижениях в области генетики?

4. Усвоение новых знаний

1. Сообщение учащегося «История изучение генома человека»

2. Смысловое чтение текста «Геном человека». Ответ на вопрос: в чем заключаются отличия понятий «Генотип» и «Геном»?

3. Просмотр видеоролика «Современное представление о строении гена». Ответы на вопросы:

    В чем заключается избирательная функция определенных генов?

    Из каких частей элементов состоит ген, кодирующий определенный белок?

4.Определение понятий аллельные и неаллельные гены, формы взаимодействия аллельных генов.

Изучении материала о формах взаимодействия неаллельных генов через решение генетических задач, составление кластера:

    Эпистаз – тип взаимодействия неаллельных генов, когда один ген подавляет действие другого гена.

Доминантный эпистаз (окраска шерсти лошадей)

А – вороная окраска

а – рыжая

В – раннее поседение (серые)

b– не вызывают поседение.

P:♀(сер)AAВВ Х♂(рыж)aabb

F 1 AaBb(сер)

AaBbХ♂AaBb

F 2 : 9/16 – A_B_ - серые

3/16 – A_bb - вороные

3/16 – AaB_ - серые

1/16 – aabb– рыжие

Расщепление 12:3:1

Комплементарное взаимодействие неаллельных генов- наследование – это скрещивание, при котором новый признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов (анализ схемы скрещивания, запись определения в тетрадь).

    Полимерия или однозначное действие генов – явления скрещивания, при котором степень выраженности признака зависит от действия нескольких различных пар аллельных генов, причем, чем больше в генотипе доминантных генов каждой пары, тем ярче выражен признак. Например, рост человека, цвет кожи у человека, окраска зерен пшеницы (работа с карточками, анализ схемы скрещивания, запись определения в тетрадь вывод)

    Множественное действие гена – плейотропия.

5. Проверка усвоения новых знаний: Фронтальная беседа по основным вопросам темы

Выводы (высказывания учащихся):

    Генотип организма состоит из независимо комбинирующих генов.
    2. Генотип является целостной системой взаимодействующих между собой генов.
    3. Каждый ген оказывает влияние на развитие многих признаков организма.

6. Закрепление

Закончим цитату, записанную на доске (ответ учащихся -геномика)

Почему XXI век должен стать веком геномики?

(Необходимость лечения болезней человека, сохранить уникальность биосферы).

Раскройте смысл утверждения о том, что действие любого гена зависит от генетической среды, то есть от влияния на него других генов

- решение задачпо теме «взаимодействие неаллельных генов»

6. Домашнее задание : запись домашнего задания, решение задач

7. Рефлексия

1. Что нового узнали на уроке?

2. Какие чувства испытывали?

3. Была ли проблема и решили ли мы её?

4. Сделали вывод?

Приложение

Комплементарность

Окраска цветов душистого горошка определяется 2 доминантными генами: ген А отвечает за синтез фермента, контролирующего развитие бесцветного пропигмента. А ген В отвечает за перевод цветного пропигмента в цветной пигмент. При скрещивании дигетерозигот расщепление будет 9:7, причём 7 (6:1; 3:4; 3:3:1).

Типовые задачи с образцами решения на комплементарное взаимодействие

1. У душистого горошка окраска цветов проявляется только при наличии двух доминантных генов А и В. Если в генотипе имеется только один доминантный ген, то окраска не развивается. Какое потомство F 1 и F 2 получится от скрещивания растений с генотипами ААвв и ааВВ?

Решение:

Первой строкой лучше писать признак, который развивается при 2-х доминантных генах, что в пропорции соответствует цифре 9.

А, в

а, В

а, в

ААвв, Аавв

ааВВ, ааВв

аавв

Решётка Пеннета

ААВВ

красный

ААВв

красный

АаВВ

красный

АаВв

красный

Ав

ААВв

красный

ААвв

белый

АвВв

красный

Аавв

белый

аВ

АаВВ

красный

АаВв

красный

ааВВ

белый

ааВв

белый

ав

АаВв

красный

Аавв

белый

ааВв

белый

аавв

белый

Вывод:

Эпистаз

Типовые задачи с образцами решения на доминантный эпистаз

1. Свиньи бывают чёрной, белой и красной окраски. Белые свиньи несут минимум один доминантный ген J . Чёрные свиньи имеют доминантный ген Е и рецессивный j . Красные поросята лишены доминантного гена подавителя и доминантного гена Е, определяющего чёрную окраску. Какое потомство можно ожидать:

а) от скрещивания 2-х белых дигетерозиготных свиней;

б) от скрещивания чёрной гомозиготной свиньи и красного кабана.

При доминантном эпистазе первой строкой лучше писать признак, который не подавляется ингибиторами в пропорции, если он соответствует числу 3.

E, J

е , J

EEJJ , EeJj , EeJJ , EEJj

eeJJ , eeJj

Красные

e, j

eejj

EEJJ , 2 EEJj , 2 EeJJ , 4 EeJj , eeJJ , 2 eeJj

EEjj , 2 Eejj

eejj

12 белые

3 чёрные

1 красный

Решётка Пеннета

EEJJ

белый

EEJj

белый

EeJJ

белый

EeJj

белый

EEJj

белый

EEjj

чёрный

EeJj

белый

Eejj

чёрный

EeJJ

белый

EeJj

белый

eeJJ

белый

eeJj

белый

EeJj

белый

Eejj

чёрный

eeJj

белый

eejj

красный

Вывод:

Полимерия

Так как полимерные гены в одинаковой степени оказывают влияние на развитие одного и того же признака, то иногда их обозначают одинаковыми буквами алфавита с указанием цифрового индекса, например: А 1 А 1 А 2 А 2 - негры..., а 1 а 1 а 2 а 2 – белые. Но нам кажется, что удобнее обозначать двумя разными буквами.

1. Сын белой женщины и негра женился на белой женщине. Может ли ребёнок от этого брака быть темнее своего отца?

Решение: Используем таблицу, приведённую выше. Сначала нужно определить генотип сына белой женщины и негра.

Затем определить генотипы его детей от брака с белой женщиной.

Вывод:

Плейотропия .

У мексиканского дога ген, вызывающий отсутствие шерсти, в гомозиготном состоянии ведет к гибели потомства. При скрещивании двух нормальных догов часть потомства погибала. При скрещивании того же самца со второй самкой, гибели потомства не было. Однако при скрещивании потомков от этих двух скрещиваний опять наблюдалась гибель щенков.

    Дано:

А - наличие шерсти АА, Аа

а - отсутствие шерсти аа

Найти:

генотипы всех скрещиваемых особей - ?

Решение:

Первое скрещивание:

P: самка Aa х самец Aa

G: A, a A,a

F?: 1 AA: 2 Aa: 1 aa - гибнут

Второе скрещивание:

P: самка AA х самец Aa

G: A A, a

F?: 1AA: 1Aa

Третье скрещивание (скрещивание потомков):

P:Aa х Aa, AA х AA, AA х Aa

G: A, а А,а А А А А, а

F?: AA, Aa, aa - гибнут

Вывод:

Ген - это участок молекулы ДНК (или РНК), кодирующий последовательность аминокислот в полипептидной цепи или последовательность нуклеотидов в молекулах транспортной РНК (тРНК) и рибосомной РНК (рРНК). 1) дискретный наследственный фактор, определяющий проявления данного признака;

2) участок ДНК, кодирующий одну молекулу РНК.

Аллельные гены - это гены, расположенные в одинаковых локусах гомологичных хромосом и контролирующие развитие вариаций одного признака (например, цвет глаз у человека, который может быть голубой, зеленый, карий, детерминируется парой аллельных генов).

Аллели - разновидности одного и того же гена, расположенные в идентичных локусах гомологичных хромосом.

Неаллельные гены - это гены, расположенные в разных локусах хромосом и контролирующие развитие разных признаков или вариаций одного признака. (Например, неаллельными являются гены, определяющие цвет и поверхность семян гороха, или различные вариации цвета кожных покровов у человека).

Генотип - это совокупность всех генов организма.

Фенотип - это совокупность всех признаков организма, которые формируются в результате реализации генотипа в определенных условиях внешней среды.

Гомозиготный организм - имеет 2 одинаковых аллельных гена и продуцирует 1 тип гамет.

Гетерозиготный это организм который имеет 2 разных аллельных гена и продуцирует 2 типа гамет. Гемизиготный - это организм у которого в диплоидном наборе присутствует лишь 1 ген из аллельной пары и этот ген всегда проявляется у гемизигот.

Наследственность - свойство живых организмов сохранять в ряду поколений сходство структурно функциональной организации.

Изменчивость - свойство живых организмов получать новые признаки под влиянием условий окружающей среды.

Геном человека -- совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.

Геном человека. Термин «геном» впервые был введен немецким ботаником Гансом Винклером в 1920 г., который охарактеризовал его как совокупность генов, характерных для гаплоидного набора хромосом данного вида организма. В отличие от генотипа, геном является характеристикой вида, а не отдельной особи. Каждая гамета диплоидного организма, несущая гаплоидный набор хромосом, по сути, содержит геном, характерный для данного вида. Вспомните наследование признаков у гороха. Гены окраски семени, формы семени, окраски цветка есть у каждого растения, они являются обязательными для его существования и входят в геном данного вида. Но у любого растения гороха, как у всех диплоидных организмов, существует два аллеля каждого гена, расположенные в гомологичных хромосомах. У одного растения это могут быть одинаковые аллели, отвечающие за желтую окраску горошин, у другого - разные, обусловливающие желтую и зеленую, у третьего - оба аллеля будут определять развитие зеленой окраски семян, и так по всем признакам. Эти индивидуальные отличия являются характеристикой генотипа конкретной особи, а не генома. Итак, геном - это «список» генов, необходимых для нормального функционирования организма. Расшифровка полной последовательности нуклеотидов в ДНК человека позволила оценить общее число генов, составляющих геном. Оказалось, что их всего около 30-40 тыс., хотя точное число пока не известно. Раньше предполагали, что количество генов у человека раза в 3-4 больше - около 100 тыс., поэтому данные результаты стали своего рода сенсацией. У каждого из нас генов всего в 5 раз больше, чем у дрожжей, и всего в 2 раза больше, чем у дрозофилы. По сравнению с другими организмами, мы имеем не так уж много генов.

Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов. В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5 % от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90 % от всего генома. Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определенных генов. Мышечной клетке не надо синтезировать кератин, а нервной - мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких, как редупликация, транскрипция, синтез АТФ и многие другие. В соответствии с современными научными представлениями, ген эукариотических клеток, кодирующий определенный белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но, тем не менее, активно участвуя в его управлении. Кроме регуляторных зон существует структурная часть гена, которая собственно и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

Вверх